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Abstract We generalize the concept of well-posedness to a mixed variational inequality
and give some characterizations of its well-posedness. Under suitable conditions, we prove
that the well-posedness of a mixed variational inequality is equivalent to the well-posedness
of a corresponding inclusion problem. We also discuss the relations between the well-
posedness of a mixed variational inequality and the well-posedness of a fixed point problem.
Finally, we derive some conditions under which a mixed variational inequality is well-posed.
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1 Introduction

Tykhonov [26] first introduced the concept of well-posedness for a minimization problem,
which has been known as Tykhonov well-posedness. Roughly speaking, the Tykhonov well-
posedness of a minimization problem means the existence and uniqueness of minimizers,
and the convergence of every minimizing sequence toward the unique minimizer. In many
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practical situations, there are more than one minimizers for a minimization problem. In
this case, the concept of Tykhonov well-posedness in the generalized sense was introduced,
which means the existence of minimizers and the convergence of some subsequence of
every minimizing sequence toward a minimizer. Clearly, the concept of well-posedness is
motivated by the numerical methods producing optimizing sequences. Because of its impor-
tance in optimization problems, various concepts of well-posedness have been introduced
and studied for minimization problems in past decades. For details, we refer the readers to
[1,6,10,18,24,26,29,30] and the references therein.

In recent years, the concept of well-posedness has been generalized to other contexts:
variational inequality problems [5,8,15–18], saddle point problems [4], Nash equilibrium
problems [17,19–23,25], inclusion problems [13,14], and fixed point problems [13,14,27].
Concerning the well-posedness of a given variational problem, it is interesting and important
to establish its metric characterization, to find conditions under which the problem is well-
posed, to investgate its links with the well-posedness of other related problems. Some metric
characterizations of various well-posedness were established for minimization problems [6],
variational inequalities [5,8,15,16] and Nash equilibrium problems [22]. For the well-posed-
ness conditions of various variational problems, we refer the readers to [5,6,8,15,16,23,25].
The relations between the well-posedness of variational inequalities and the well-posedness
of minimization problems were discussed in [5,16,18]. Lemaire [13] discussed the relations
among the well-posedness of minimization problems, inclusion problems and fixed point
problems. Recently, Lemaire et al. [14] further extended the result in ref. [13] by considering
perturbations.

Motivated by the afore-mentioned works, in this paper we investigate the well-posedness
of a mixed variational inequality which includes as a special case the classical variational
inequality. We give some metric characterizations of its well-posedness and establish the
links with the well-posedness of inclusion problems and fixed point problems. Finally, we
prove that under suitable conditions, the well-posedness of the mixed variational inequality
is equivalent to the existence and uniqueness of its solutions, and the well-posedness in the
generalized sense is equivalent to the existence of solutions.

2 Preliminaries

Let H be a real Hilbert space, F :H → H be a mapping and ϕ:H → R ∪{+∞} be a proper,
convex and lower semicontinuous functional. Denote by domϕ the domain of ϕ, i.e.,

domϕ = {x ∈ H : ϕ(x) < +∞}.
Consider the following mixed variational inequality associated with (F, ϕ):

MVI(F, ϕ) : find x ∈ H such that〈F(x), x − y〉 + ϕ(x) − ϕ(y) ≤ 0, ∀y ∈ H,

which has been studied intensively (see, e.g., [2,7,9,28]). When ϕ = δK , MVI(F, ϕ) reduces
to the classical variational inequality:

VI(F,K) : find x ∈ Ksuch that 〈F(x), x − y〉 ≤ 0, ∀y ∈ K,

where δK denotes the indicator functional of a convex subset K of H . Denote by ∂ϕ and ∂εϕ

the subdifferential and ε-subdifferential of ϕ respectively, i.e.,

∂ϕ(x) = {x∗ ∈ H : ϕ(y) − ϕ(x) ≥ 〈x∗, y − x〉,∀y ∈ H }, ∀x ∈ dom ϕ,

∂εϕ(x) = {x∗ ∈ H : ϕ(y) − ϕ(x) ≥ 〈x∗, y − x〉 − ε,∀y ∈ H }, ∀x ∈ dom ϕ.
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It is known that ∂εϕ(x) ⊃ ∂ϕ(x) �= ∅ for all x ∈ domϕ and for all ε > 0. In terms of ∂ϕ,
MVI(F, ϕ) is equivalent to the following inclusion problem associated with F + ∂ϕ:

IP(F + ∂ϕ) : find x ∈ H such that 0 ∈ F(x) + ∂ϕ(x).

The resolvent operator of ∂ϕ is defined by

Jλ
ϕ (x) = (I + λ∂ϕ)−1(x), ∀x ∈ H,

which is well-defined, single-valued and nonexpansive, where λ > 0 is a constant. Recall that
a mapping T : H → H is said to be nonexpansive if ‖T x −Ty‖ ≤ ‖x −y‖ for all x, y ∈ H .
In terms of J λ

ϕ , MVI(F, ∂ϕ) is also equivalent to the following fixed point problem:

FP(J λ
ϕ (I − λF)) : find x ∈ H such that x = Jλ

ϕ (I − λF)(x).

Summarizing the above results, we have the following lemma:

Lemma 2.1 (See, e.g., [2,9,28]) Let F :H → H be a mapping and ϕ:H → R ∪ {+∞} be
a proper, convex and lower semicontinuous functional. Then the following conclusions are
equivalent:

(i) x solves MVI(F, ϕ);

(ii) x solves IP(F + ∂ϕ);

(iii) x solves FP(J λ
ϕ (I − λF)), where λ > 0 is a constant.

In the sequel we recall some concepts.

Definition 2.1 A mapping F :H → H is said to be monotone if

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ H.

Definition 2.2 A mapping F : H → H is said to be hemicontinuous if for any x, y ∈ H , the
function t �→ 〈F(x + t (y − x)), y − x〉 from [0, 1] into R is continuous at 0+.

Clearly, the continuity implies the hemicontinuity, but the converse is not true in general.

Definition 2.3 A mapping F :H → H is said to be uniformly continuous if for any neigh-
borhood V of 0, there exists a neighborhood U of 0 such that F(x) − F(y) ∈ V for all
x, y ∈ U . Obviously, the uniform continuity implies the hemicontinuity.

Lemma 2.2 (See, e.g. [2,9,28]) Let F : H → H be monotone and hemicontinuous, ϕ:H →
R ∪ {+∞} be proper, convex and lower semicontinuous, and x ∈ V a give point. Then

〈F(x), x − y〉 + ϕ(x) − ϕ(y) ≤ 0, ∀y ∈ H

if and only if

〈F(y), x − y〉 + ϕ(x) − ϕ(y) ≤ 0, ∀y ∈ H.

Definition 2.4 (See [12]) Let A be a nonempty subset of H . The measure of noncompactness
µ of the set A is defined by

µ(A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, diam Ai < ε, i = 1, 2, · · · , n},

where diam means the diameter of a set.
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Definition 2.5 Let A,B be nonempty subsets of H . The Hausdorff metric H(·, ·) between
A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},
where e(A,B) = supa∈A d(a, B) with d(a, B) = infb∈B ‖a − b‖. Let {An} be a sequence
of nonempty subsets of H . We say that An converges to A in the sense of Hausdorff metric
if H(An,A) → 0. It is easy to see that e(An,A) → 0 if and only if d(an,A) → 0 for all
selection an ∈ An. For more details on this topic, we refer the readers to [11,12].

3 Well-posedness and metric characterization

In this section we introduce some concepts of well-posedness of the mixed variational inequal-
ity and establish their metric characterizations. Let α ≥ 0 be a given number and let H,F, ϕ

be defined as in the previous section.

Definition 3.1 A sequence {xn} ⊂ H is called an α-approximating sequence for MVI(F, ϕ)

if there exists a sequence {εn} of non-negative numbers with εn → 0 such that

xn ∈ dom ϕ, 〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y) ≤ α

2
‖xn − y‖2 + εn, ∀y ∈ H,∀n ∈ N.

If α1 > α2 ≥ 0, then every α2-approximating sequence is α1-approximating. When α = 0,
we say that {xn} is approximating for MVI(F, ϕ).

Definition 3.2 We say that MVI(F, ϕ) is strongly (resp. weakly) α-well-posed if MVI(F, ϕ)

has a unique solution and every α-approximating sequence converges strongly (resp. weakly)
to the unique solution. In the sequel, strong (resp. weak) 0-well-posedness is always called
as strong (resp. weak) well-posedness. If α1 > α2 ≥ 0, then strong (resp. weak) α1-well-po-
sedness implies strong (resp. weak) α2-well-posedness.

Remark 3.1 When ϕ = δK , Definition 3.2 reduces to the definition of strong (resp. weak)
α-well-posedness for the classical variational inequality. For details, we refer the readers to
[5,16,17] and the references therein.

Definition 3.3 We say that MVI(F, ϕ) is strongly (resp. weakly) α-well-posed in the gener-
alized sense if MVI(F, ϕ) has a nonempty solution set S and every α-approximating sequence
has a subsequence which converges strongly (resp. weakly) to some point of S. When α = 0,
we say that MVI(F, ϕ) is strongly (resp. weakly) well-posed in the generalized sense. Clearly,
if α1 > α2 ≥ 0, then strong (resp. weak) α1-well-posedness in the generalized sense implies
strong (resp. weak) α2-well-posedness in the generalized sense.

Remark 3.2 When ϕ = δK , Definition 3.3 reduces to the definition of strongly (weakly)
α-well-posedness in the generalized sense for the classical variational inequality. For details,
we refer readers to [5,16,17] and the references therein.

The α-approximating solution set of MVI(F, ϕ) is defined by

�α(ε) = {x ∈ H : 〈F(x), x − y〉 + ϕ(x) − ϕ(y) ≤ α

2
‖x − y‖2 + ε,∀y ∈ H }, ∀ε ≥ 0.

Now we give a metric characterization of strong α-well-posedness for MVI(F, ϕ).
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Theorem 3.1 Let F :H → H be hemicontinuous and monotone and let ϕ:H → R ∪{+∞}
be proper, convex and lower semicontinuous. Then MVI(F, ϕ) is strongly α-well-posed if
and only if

�α(ε) �= ∅, ∀ε > 0 and diam �α(ε) → 0 as ε → 0. (1)

Proof Suppose that MVI(F, ϕ) is strongly α-well-posed. Then MVI(F, ϕ) has a unique solu-
tion which belongs to �α(ε) for all ε > 0. If diam �α(ε) �→ 0 as ε → 0, then there exist
constant l > 0 and sequences {εn} ⊂ R+ with εn → 0, and {un}, {vn} with un, vn ∈ �α(εn)

such that

‖un − vn‖ > l, ∀n ∈ N. (2)

Since un, vn ∈ �α(εn), both {un} and {vn} are α-approximating sequences for MVI(F, ϕ).
So they have to converge strongly to the unique solution of MVI(F, ϕ), a contradiction to (2).

Conversely, suppose that condition (1) holds. Let {xn} ⊂ H be an α-approximating
sequence for MVI(F, ϕ). Then there exists a sequence {εn} ⊂ R+ with εn → 0 such that

xn ∈ dom ϕ, 〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y) ≤ α

2
‖xn − y‖2 + εn, ∀y ∈ H,∀n ∈ N.

(3)

This yields that xn ∈ �α(εn). From (1), we know that {xn} is a Cauchy sequence and so it
converges strongly to a point x̄ ∈ H . Since F is monotone and ϕ is lower semicontinuous,
it follows from (3) that

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y)

≤ lim inf
n→∞ {〈F(y), xn − y〉 + ϕ(xn) − ϕ(y)}

≤ lim inf
n→∞ {〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y)}

≤ lim inf
n→∞ {α

2
‖xn − y‖2 + εn}

= α

2
‖x̄ − y‖2, ∀y ∈ H.

For any y ∈ H , let yt = (1 − t)x̄ + ty, t ∈ [0, 1]. Then

〈F(yt ), x̄ − yt 〉 + ϕ(x̄) − ϕ(yt ) ≤ α

2
‖x̄ − yt‖2.

Since ϕ is convex,

〈F(yt ), x̄ − y〉 + ϕ(x̄) − ϕ(y) ≤ tα

2
‖x̄ − y‖2.

Letting t → 0 in the above inequality, we get

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y) ≤ 0, ∀y ∈ H.

By Lemma 2.2, x̄ solves MVI(F, ϕ).
To complete the proof, we need only to prove that MVI(F, ϕ) has a unique solution.

Assume by contradiction that MVI(F, ϕ) has two distinct solution x1 and x2. Then it is easy
to see that x1, x2 ∈ �α(ε) for all ε > 0 and

0 < ‖x1 − x2‖ ≤ diam �α(ε) → 0,

a contradiction to (1). �
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Remark 3.3 Theorem 3.1 generalizes Proposition 2.2 of [5].

In terms of noncompact measure, we have the following analogous metric characterization
of strong α-well-posedness in the generalized sense.

Theorem 3.2 Let F :H → H be such that the functional x �→ 〈F(x), x − y〉 is lower
semicontinuous for all y ∈ H , and let ϕ:H → R ∪ {+∞} be proper, convex and lower
semicontinuous. Then MVI(F, ϕ) is strongly α-well-posed in the generalized sense if and
only if

�α(ε) �= ∅, ∀ε > 0 and µ(�α(ε)) → 0 as ε → 0. (4)

Proof Suppose that MVI(F, ϕ) is strongly α-well-posed in the generalized sense. Let S be
the solution set of MVI(F, ϕ). Then S is nonempty and compact. Indeed, let {xn} be any
sequence in S. Then {xn} is α-approximating for MVI(F, ϕ). Since MVI(F, ϕ) is strongly
α-well-posed in the generalized sense, {xn} has a subsequence which converges strongly to
some point of S. Thus S is compact. Clearly, �α(ε) ⊃ S �= ∅ for all ε > 0. Now we show
that

µ(�α(ε)) → 0 as ε → 0.

Observe that for every ε > 0,

H(�α(ε), S) = max{e(�α(ε), S), e(S,�α(ε))} = e(�α(ε), S).

Taking into account the compactness of S, we get

µ(�α(ε)) ≤ 2H(�α(ε), S) = 2e(�α(ε), S).

To prove (4), it is sufficient to show

e(�α(ε), S) → 0 as ε → 0.

If e(�α(ε), S) �→ 0 as ε → 0, then there exist l > 0 and {εn} ⊂ R+ with εn → 0, and
xn ∈ �α(εn) such that

xn �∈ S + B(0, l), ∀n ∈ N, (5)

where B(0, l) is the closed ball centered at 0 with radius l. Being xn ∈ �α(εn), {xn} is an
α-approximating sequence for MVI(F, ϕ). Since MVI(F, ϕ) is strongly α-well-posed in the
generalized sense, there exists a subsequence {xnk

} of {xn} converging strongly to some point
of S. This contradicts to (5) and so

e(�α(ε), S) → 0 as ε → 0.

Conversely, assume that (4) holds. We first show that �α(ε) is closed for all ε > 0. Let
xn ∈ �α(ε) with xn → x. Then

〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y) ≤ α

2
‖xn − y‖2 + ε, ∀y ∈ H.

Since z �→ 〈F(z), z − y〉 and ϕ are lower semicontinuous,

〈F(x), x − y〉 + ϕ(x) − ϕ(y) ≤ α

2
‖x − y‖2 + ε, ∀y ∈ H.

This yields x ∈ �α(ε) and so �α(ε) is nonempty closed for all ε > 0. Observe that

S = ∩ε>0�α(ε).
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Since µ(�α(ε)) → 0, the Theorem on page 412 of [12] can be applied and one concludes
that S is nonempty and compact with

e(�α(ε), S) = H(�α(ε), S) → 0, ε → 0.

Let {un} ⊂ H be an α-approximating sequence for MVI(F, ϕ). Then there exists εn > 0
with εn → 0 such that

un ∈ domϕ, 〈F(un), un − y〉 + ϕ(un) − ϕ(y) ≤ α

2
‖un − y‖2 + εn, ∀y ∈ H,∀n ∈ N.

So un ∈ �α(εn) follows from definition. It follows from (4) that

d(un, S) ≤ e(�α(εn), S) → 0.

Since S is compact, there exists x̄n ∈ S such that

‖un − x̄n‖ = d(un, S) → 0.

Again from the compactness of S, {x̄n} has a subsequence {x̄nk
} converging strongly to

x̄ ∈ S. Hence the corresponding subsequence {unk
} of {un} converges strongly to x̄. Thus

MVI(F, ϕ) is strongly α-well-posed in the generalized sense. �

Now we give the following example as an application of Theorem 3.1.

Example 3.1 Let H = R, F(x) = x and ϕ(x) = x2 for all x ∈ H . Clearly, F is hemi-
continuous and monotone, and ϕ is proper, convex and lower semicontinuous. Let α = 2.
Then

�2(ε) = {x ∈ R : x(x − y) + x2 − y2 ≤ (x − y)2 + ε,∀y ∈ R}
= {x ∈ R : −2

(
y − x

4

)2 + 9x2

8
− ε ≤ 0,∀y ∈ R}

=
[
−2

√
2ε

3
,+2

√
2ε

3

]
.

By Theorem 3.1, MVI(F, ϕ) is 2-well-posed since diam�2(ε) = 4
√

2ε
3 → 0 as ε → 0.

4 Links with well-posedness of inclusion problems

In this section we shall investigate the relations between the well-posedness of mixed varia-
tional inequalities and the well-posedness of inclusion problems. In what follows we always
denote by → and ⇀ the strong convergence and weak convergence, respectively. Let A :
H → 2H be a set-valued mapping. The inclusion problem associated with A is defined by

IP(A) : find x ∈ H such that 0 ∈ A(x).

Definition 4.1 [13,14] A sequence {xn} ⊂ H is called an approximating sequence for IP(A)

if d(0, A(xn)) → 0, or equivalently, there exists yn ∈ A(xn) such that ‖yn‖ → 0 as n → ∞.

Definition 4.2 [13,14] We say that IP(A) is strongly (resp. weakly) well-posed if it has a
unique solution and every approximating sequence converges strongly (resp. weakly) to the
unique solution of IP(A). IP(A) is said to be strongly (resp. weakly) well-posed in the gen-
eralized sense if the solution set S of IP(A) is nonempty and every approximating sequence
has a subsequence which converges strongly (resp. weakly) to a point of S.
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The following theorems establish the relations between the strong (resp. weak)
well-posedness of mixed variational inequalities and the strong (resp. weak) well-posed-
ness of inclusion problems.

Theorem 4.1 Let F :H → H be hemicontinuous and monotone, and let ϕ:H → R∪{+∞}
be proper, convex and lower semicontinuous. If MVI(F, ϕ) is weakly well-posed, then IP(F +
∂ϕ) is weakly well-posed.

Proof Suppose that MVI(F, ϕ) is weakly well-posed. Then MVI(F, ϕ) has a unique solution
x∗. By Lemma 2.1, x∗ is also the unique solution of IP(F +∂ϕ). Let {xn} be an approximating
sequence for IP(F + ∂ϕ). Then there exists yn ∈ F(xn) + ∂ϕ(xn) such that ‖yn‖ → 0. It
follows that

ϕ(y) − ϕ(xn) ≥ 〈yn − F(xn), y − xn〉, ∀y ∈ H,∀n ∈ N. (6)

If {xn} is unbounded, without loss of generality, we can suppose that ‖xn‖ → +∞. Let

tn = 1

‖xn − x∗‖ , zn = x∗ + tn(xn − x∗).

Without loss of generality, we can suppose that tn ∈ (0, 1] and zn ⇀ z(�= x∗). For any
y ∈ H , it follows that

〈F(y), z − y〉
= 〈F(y), z − zn〉 + 〈F(y), zn − x∗〉 + 〈F(y), x∗ − y〉
= 〈F(y), z − zn〉 + tn〈F(y), xn − x∗〉 + 〈F(y), x∗ − y〉
= 〈F(y), z − zn〉 + tn〈F(y), xn − y〉 + (1 − tn)〈F(y), x∗ − y〉. (7)

Since F is monotone,

〈F(y), x∗ − y〉 ≤ 〈F(x∗), x∗ − y〉 and 〈F(y), xn − y〉 ≤ 〈F(xn), xn − y〉. (8)

Furthermore, we have

〈F(x∗), x∗ − y〉 + ϕ(x∗) − ϕ(y) ≤ 0, ∀y ∈ H (9)

since x∗ is the unique solution of MVI(F, ϕ). Since ϕ is convex, it follows from (6) to (9)
that

〈F(y), z − y〉
≤ 〈F(y), z − zn〉 + tnϕ(y) − tnϕ(xn) + tn〈yn, xn − y〉 + (1 − tn)[ϕ(y) − ϕ(x∗)]
= 〈F(y), z − zn〉 + ϕ(y) − [tnϕ(xn) + (1 − tn)ϕ(x∗)] + 〈yn, xn − y〉

‖xn − x∗‖
≤ 〈F(y), z − zn〉 + ϕ(y) − ϕ(zn) + 〈yn, xn − y〉

‖xn − x∗‖ .

Therefore,

〈F(y), z − y〉
≤ lim inf

n→∞

{
〈F(y), z − zn〉 + ϕ(y) − ϕ(zn) + 〈yn, xn − y〉

‖xn − x∗‖
}

≤ ϕ(y) − ϕ(z), ∀y ∈ H.
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This together with Lemma 2.2 yields that z solves MVI(F, ϕ), a contradiction. Thus, {xn} is
bounded.

Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x̄ as k → ∞. It follows from (6)
that

〈F(xnk
), xnk

− y〉 + ϕ(xnk
) − ϕ(y) ≤ 〈ynk

, xnk
− y〉, ∀y ∈ H,∀k ∈ N.

Since F is monotone, ϕ is convex and lower semicontinuous, and ‖yn‖ → 0, we have

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y)

≤ lim inf
k→∞ {〈F(y), xnk

− y〉 + ϕ(xnk
) − ϕ(y)}

≤ lim inf
k→∞ {〈F(xnk

), xnk
− y〉 + ϕ(xnk

) − ϕ(y)}
≤ lim inf

k→∞ 〈ynk
, xnk

− y〉 = 0, ∀y ∈ H.

This together with Lemma 2.2 yields that x̄ solves MVI(F, ϕ). We have x̄ = x∗ since
MVI(F, ϕ) has a unique solution x∗. Thus xn converges weakly to x∗ and so IP(F + ∂ϕ) is
weakly well-posed. �

Theorem 4.2 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R ∪ {+∞} be proper, convex and lower semicontinuous. If IP(F + ∂ϕ) is strongly (resp.
weakly) well-posed, then MVI(F, ϕ) is strongly (resp. weakly) well-posed.

Proof Let {xn} be an approximating sequence for MVI(F, ϕ). Then there exists εn > 0 with
εn → 0 such that

ϕ(xn) ≤ ϕ(y) + 〈F(xn), y − xn〉 + εn, ∀y ∈ H,∀n ∈ N.

Define ϕ̃n : H → R ∪ {+∞} as follows:

ϕ̃n(y) = ϕ(y) + 〈F(xn), y − xn〉, ∀y ∈ H.

Clearly ϕ̃n is proper, convex and lower semicontinuous and 0 ∈ ∂εn ϕ̃(xn) for all n ∈ N . By
the Brøndsted–Rockafellar theorem ([3]), there exist x̄n ∈ H and

x∗
n ∈ ∂ϕ̃n(x̄n) = ∂ϕ(x̄n) + F(xn)

such that

‖xn − x̄n‖ ≤ √
εn, ‖x∗

n‖ ≤ √
εn.

It follows that

x∗
n + F(x̄n) − F(xn) ∈ (F + ∂ϕ)(x̄n).

Since F is uniformly continuous,

‖x∗
n + F(x̄n) − F(xn)‖ ≤ ‖x∗

n‖ + ‖F(x̄n) − F(xn)‖ → 0.

So {x̄n} is an approximating sequence for IP(F + ∂ϕ).
Let x∗ be the unique solution of MVI(F, ϕ). By Lemma 2.1, x∗ is also the unique solution

of IP(F + ∂ϕ).
If IP(F + ∂ϕ) is strongly well-posed, then x̄n → x∗. It follows that

‖xn − x∗‖ ≤ ‖xn − x̄n‖ + ‖x̄n − x∗‖ → 0

123



126 J Glob Optim (2008) 41:117–133

and so MVI(F, ϕ) is strongly well-posed.
If IP(F + ∂ϕ) is weakly well-posed, then x̄n ⇀ x∗. For any f ∈ H , we have

|〈f, xn − x∗〉| ≤ |〈f, xn − x̄n〉| + |〈f, x̄n − x∗〉| ≤ ‖f ‖√εn + |〈f, x̄n − x∗〉| → 0.

Thus MVI(F, ϕ) is weakly well-posed. �
For the well-posedness in the generalized sense, we have the following analogous results.

Theorem 4.3 Let F :H → H be hemicontinuous and monotone, and let ϕ:H → R∪{+∞}
be proper, convex and lower semicontinuous. If MVI(F, ϕ) is strongly (resp. weakly) 1-well-
posed in the generalized sense, then IP(F + ∂ϕ) is strongly (resp. weakly) well-posed in the
generalized sense.

Proof Let {xn} be an approximating sequence for IP(F + ∂ϕ). Then there exists yn ∈
F(xn) + ∂ϕ(xn) such that ‖yn‖ → 0. It follows that

ϕ(y) − ϕ(xn) ≥ 〈yn − F(xn), y − xn〉, ∀y ∈ H,∀n ∈ N

and so

〈F(xn), xn−y〉 + ϕ(xn) − ϕ(y)≤〈yn, xn − y〉≤1

2
‖xn − y‖2 + 1

2
‖yn‖2, ∀y ∈ H,∀n ∈ N.

This together with ‖yn‖ → 0 implies that {xn} is 1-approximating for MVI(F, ϕ). Since
MVI(F, ϕ) is strongly (resp. weakly) 1-well-posed in the generalized sense, xn converges
strongly (resp. weakly) to some solution x∗ of MVI(F, ϕ). By Lemma 2.1, x∗ is also a solu-
tion of IP(F + ∂ϕ). So IP(F + ∂ϕ) is strongly (resp. weakly) well-posed in the generalized
sense. �

Theorem 4.4 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R ∪ {+∞} be proper, convex and lower semicontinuous. If IP(F + ∂ϕ) is strongly (resp.
weakly) well-posed in the generalized sense, then MVI(F, ϕ) is strongly (resp. weakly) well-
posed in the generalized sense.

Proof The conclusion follows from similar arguments as Theorem 4.2. �

5 Links with well-posedness of fixed point problems

In this section we shall investigate the relations between the well-posedness of mixed var-
iational inequalities and the well-posedness of fixed point problems. Let T : H → H be a
single-valued mapping. The fixed-point problem associated with T is defined by

FP(T ) : find x ∈ H such that T (x) = x.

We first recall some concepts.

Definition 5.1 [13,14] A sequence {xn} ⊂ H is called an approximating sequence for FP(T )

if ‖xn − T (xn)‖ → 0 as n → ∞.

Definition 5.2 [13,14] We say that FP(T ) is strongly (resp. weakly) well-posed if FP(T )

has a unique solution and every approximating sequence for FP(T ) converges strongly (resp.
weakly) to the unique solution. FP(T ) is said to be strongly (resp. weakly) well-posed in the
generalized sense if FP(T ) has a nonempty solution set S and every approximating sequence
for FP(T ) has a subsequence which converges strongly (resp. weakly) to some point of S.
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Theorem 5.1 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R ∪{+∞} be proper, convex and lower semicontinuous. If MVI(F, ϕ) is weakly well-posed,
then FP(J λ

ϕ (I − λF)) is weakly well-posed, where λ > 0 is a constant.

Proof Suppose that MVI(F, ϕ) is weakly well-posed. Let x∗ be the unique solution of
MVI(F, ϕ). By Lemma 2.1, x∗ is also the unique solution of FP(J λ

ϕ (I − λF)). Let {xn} be
an approximating sequence for FP(J λ

ϕ (I − λF)). Then ‖xn − wn‖ → 0, where

wn = J λ
ϕ (I − λF)(xn) = J λ

ϕ (xn − λF(xn)).

By the definition of J λ
ϕ ,

xn − wn

λ
− F(xn) ∈ ∂ϕ(wn).

It follows that

ϕ(y) − ϕ(wn) ≥
〈
xn − wn

λ
− F(xn), y − wn

〉
, ∀y ∈ H,∀n ∈ N. (10)

If {wn} is unbounded, without loss of generality, we can suppose that ‖wn‖ → +∞. Let

tn = 1

‖wn − x∗‖ , zn = x∗ + tn(xn − x∗).

Without loss of generality, we can suppose that tn ∈ (0, 1] and zn ⇀ z(�= x∗). By similar
arguments as Theorem 4.1, we have

〈F(y), z − y〉
≤ 〈F(y), z − zn〉 + tn〈F(wn) − F(xn), wn − y〉

+ ϕ(y) − ϕ(zn) + tn

λ
〈wn − xn, y − wn〉, ∀y ∈ H,∀n ∈ N.

Since F is uniformly continuous, ϕ is convex and lower semicontinuous, it follows that

〈F(y), z − y〉
≤ lim inf

n→∞

{
〈F(y), z − zn〉 + tn〈F(wn) − F(xn), wn − y〉

+ϕ(y) − ϕ(zn) + tn

λ
〈wn − xn, y − wn〉

}

≤ ϕ(y) − ϕ(z), ∀y ∈ H.

This together with Lemma 2.2 implies that z solves MVI(F, ϕ), a contradiction. Thus, {wn}
is bounded.

Let {wnk
} be any subsequence of {wn} such that wnk

⇀ w̄ as k → ∞. From (10), we
have

〈F(wnk
), wnk

− y〉 + ϕ(wnk
) − ϕ(y)

≤
〈
xnk

− wnk

λ
,wnk

− y

〉
+ 〈F(wnk

) − F(xnk
), wnk

− y〉, ∀y ∈ H.
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Since F is monotone and uniformly continuous, and ϕ is convex and lower semicontinuous,

〈F(y), w̄ − y〉 + ϕ(w̄) − ϕ(y)

≤ lim inf
k→∞ {〈F(y),wnk

− y〉 + ϕ(wnk
) − ϕ(y)}

≤ lim inf
k→∞ {〈F(wnk

), wnk
− y〉 + ϕ(wnk

) − ϕ(y)}

≤ lim inf
k→∞

{〈
xnk

− wnk

λ
,wnk

− y

〉
+ 〈F(wnk

) − F(xnk
), wnk

− y〉
}

= 0, ∀y ∈ H,∀n ∈ N.

This together with Lemma 2.2 yields that w̄ solves MVI(F, ϕ). We have wn ⇀ x∗ since
MVI(F, ϕ) has a unique solution x∗. For any f ∈ H , it follows that

|〈f, xn − x∗〉| ≤ |〈f, xn − wn〉| + |〈f,wn − x∗〉|
≤ ‖f ‖ · ‖xn − wn‖ + |〈f,wn − x∗〉| → 0.

Thus xn ⇀ x∗ and so FP(J λ
ϕ (I − λF)) is weakly well-posed. �

Theorem 5.2 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R∪{+∞} be proper, convex and lower semicontinuous. If FP(J λ

ϕ (I −λF)) is strongly (resp.
weakly) well-posed, then MVI(F, ϕ) is strongly (resp. weakly) well-posed.

Proof Let {xn} be an approximating sequence for MVI(F, ϕ). Then there exists εn > 0 with
εn → 0 such that

ϕ(xn) ≤ ϕ(y) + 〈F(xn), y − xn〉 + εn, ∀y ∈ H,∀n ∈ N.

Define ϕ̃n : H → R ∪ {+∞} as follows:

ϕ̃n(y) = ϕ(y) + 〈F(xn), y − xn〉, ∀y ∈ H.

Clearly ϕ̃n is proper, convex and lower semicontinuous and 0 ∈ ∂εn ϕ̃(xn) for all n ∈ N . By
the Brøndsted–Rockafellar theorem ([3]), there exist x̄n ∈ H and

x∗
n ∈ ∂ϕ̃n(x̄n) = ∂ϕ(x̄n) + F(xn) (11)

such that

‖xn − x̄n‖ ≤ √
εn, ‖x∗

n‖ ≤ √
εn. (12)

From (11), we have

x̄n = J λ
ϕ [x̄n + λx∗

n − λF(xn)]. (13)

It follows from (12) to (13) that

‖x̄n − Jλ
ϕ (I − λF)(x̄n)‖

= ‖J λ
ϕ [x̄n + λx∗

n − λF(xn)] − Jλ
ϕ [x̄n − λF(x̄n)]‖

≤ ‖λx∗
n + λ[F(x̄n) − F(xn)]‖

≤ λ‖x∗
n‖ + λ‖F(x̄n) − F(xn)‖ → 0

and so {x̄n} is an approximating sequence for FP(J λ
ϕ (I − λF)).

Let x∗ be the unique solution of FP(J λ
ϕ (I − λF)). By Lemma 2.1, x∗ is also the unique

solution of MVI(F, ϕ).
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If FP(J λ
ϕ (I − λF)) is strongly well-posed, then x̄n → x∗. It follows that

‖xn − x∗‖ ≤ ‖xn − x̄n‖ + ‖x̄n − x∗‖ → 0.

Thus MVI(F, ϕ) is strongly well-posed.
If FP(J λ

ϕ (I − λF)) is weakly well-posed, then x̄n ⇀ x∗. For any f ∈ H , we have

|〈f, xn − x∗〉| ≤ |〈f, xn − x̄n〉| + |〈f, x̄n − x∗〉|
≤ ‖f ‖√εn + |〈f, x̄n − x∗〉| → 0

and so MVI(F, ϕ) is weakly well-posed. �

For the well-posedness in the generalized sense, we have the following result.

Theorem 5.3 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R ∪ {+∞} be proper, convex and lower semicontinuous. If MVI(F, ϕ) is strongly (resp.
weakly) (1 + 1

λ
)-well-posed in the generalized sense, then FP(J λ

ϕ (I −λF)) is strongly (resp.
weakly) well-posed in the generalized sense, where λ > 0 is a constant.

Proof Let {xn} be an approximating sequence for FP(J λ
ϕ (I − λF)). Then ‖xn − wn‖ → 0,

where

wn = J λ
ϕ (I − λF)(xn) = J λ

ϕ (xn − λF(xn)).

By the definition of J λ
ϕ ,

xn − wn

λ
− F(xn) ∈ ∂ϕ(wn).

From the definition of subdifferential, we get

ϕ(y) − ϕ(wn) ≥
〈
xn − wn

λ
− F(xn), y − wn

〉
, ∀y ∈ H,∀n ∈ N.

It follows that

〈F(wn),wn − y〉 + ϕ(wn) − ϕ(y)

≤ F(wn) − F(xn), wn − y〉 + 1

λ
〈xn − wn,wn − y〉

≤ 1

2
(1+ 1

λ
)‖wn − y‖2+

(
1

2
‖F(wn)−F(xn)‖2+ 1

2λ
‖xn − wn‖2

)
, ∀y ∈ H,∀n ∈ N.

Since F is uniformly continuous and ‖wn − xn‖ → 0, {wn} is (1 + 1
λ
)-approximating for

MVI(F, ϕ).
If MVI(F, ϕ) is strongly (1 + 1

λ
)-well-posed in the generalized sense, then {wn} has a

subsequence {wnk
} such that wnk

→ x̄∗ as k → ∞, where x∗ is a solution of MVI(F, ϕ).
By Lemma 2.1, x∗ is also a solution of FP(J λ

ϕ (I − λF)). It follows that

‖xnk
− x∗‖ ≤ ‖xnk

− wnk
‖ + ‖wnk

− x∗‖ → 0

as k → ∞. Thus FP(J λ
ϕ (I − λF)) is strongly well-posed in the generalized sense.

If MVI(F, ϕ) is weakly (1 + 1
λ
)-well-posed in the generalized sense, then {wn} has a

subsequence {wnk
} such that wnk

⇀ x̄∗ as k → ∞, where x∗ is a solution of MVI(F, ϕ).
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By Lemma 2.1, x∗ is also a solution of FP(J λ
ϕ (I − λF)). For any f ∈ H , it follows that, as

k → ∞,

|〈f, xnk
− x∗〉| ≤ |〈f, xnk

− wnk
〉| + |〈f,wnk

− x∗〉|
≤ ‖f ‖ · ‖xnk

− wnk
‖ + |〈f,wnk

− x∗〉| → 0.

Thus FP(J λ
ϕ (I − λF)) is weakly well-posed in the generalized sense. �

Theorem 5.4 Let F :H → H be uniformly continuous and monotone, and let ϕ:H →
R∪{+∞} be proper, convex and lower semicontinuous. If FP(J λ

ϕ (I −λF)) is strongly (resp.
weakly) well-posed in the generalized sense, then MVI(F, ϕ) is strongly (resp. weakly) well-
posed in the generalized sense.

Proof The conclusion follows from similar arguments as Theorem 5.2. �

6 Conditions for well-posedness

In this section we shall prove that under suitable conditions the well-posedness of the mixed
variational inequality is equivalent to the existence and uniqueness of its solutions, and the
well-posedness in the generalized sense is equivalent to the existence of its solutions.

Theorem 6.1 Let F :H → H be hemicontinuous and monotone, and let ϕ:H → R∪{+∞}
be proper, convex and lower semicontinuous. Then, MVI(F, ϕ) is weakly well-posed if and
only if it has a unique solution.

Proof The necessity is obvious. For the sufficiency, suppose that MVI(F, ϕ) has a unique
solution x∗. If MVI(F, ϕ) is not weakly well-posed, then there exists an approximating
sequence {xn} for MVI(F, ϕ) such that xn �⇀ x∗. Thus, there exists εn > 0 with εn → 0
such that

〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y) ≤ εn, ∀y ∈ H,∀n ∈ N. (14)

If {xn} is unbounded, without loss of generality, we can suppose that ‖xn‖ → +∞. Let

tn = 1

‖xn − x∗‖ , zn = x∗ + tn(xn − x∗).

Without loss of generality, we can suppose that tn ∈ (0, 1] and zn ⇀ z(�= x∗). By similar
arguments as in Theorem 4.1, we have

〈F(y), z − y〉 ≤ 〈F(y), z − zn〉 + ϕ(y) − ϕ(zn) + tnεn, ∀y ∈ H, ∀n ∈ N.

It follows that

〈F(y), z − y〉
≤ lim inf

n→∞ {〈F(y), z − zn〉 + ϕ(y) − ϕ(zn) + tnεn}
≤ ϕ(y) − ϕ(z), ∀y ∈ H.

This together with Lemma 2.2 yields that z solves MVI(F, ϕ), a contradiction. Thus, {xn} is
bounded.
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Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x̄ as k → ∞. It follows from (14)
that

〈F(xnk
), xnk

− y〉 + ϕ(xnk
) − ϕ(y) ≤ εnk

, ∀y ∈ H, ∀n ∈ N.

Since F is monotone and ϕ is convex and lower semicontinuous, we have

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y)

≤ lim inf
k→∞ {〈F(y), xnk

− y〉 + ϕ(xnk
) − ϕ(y)}

≤ lim inf
k→∞ {〈F(xnk

), xnk
− y〉 + ϕ(xnk

) − ϕ(y)}
≤ lim inf

k→∞ εnk
= 0, ∀y ∈ H.

This together with Lemma 2.2 yields that x̄ solves MVI(F, ϕ). We have x̄ = x∗ since
MVI(F, ϕ) has a unique solution x∗. Thus xn converges weakly to x∗, a contradiction. So
MVI(F, ϕ) is weakly well-posed. �

Example 6.1 Let H,F, ϕ be defined as in Example 3.1. It is easy to see that F is hemicontn-
uous and monotone, ϕ is proper, convex and lower semicontinuous, and MVI(F, ϕ) has a
unique solution x∗ = 0. By Theorem 6.1, MVI(F, ϕ) is well-posed.

Theorem 6.2 Let F :Rm → Rm be hemicontinuous and monotone, and let ϕ:Rm → R ∪
{+∞} be proper, convex and lower semicontinuous. If there exists some ε > 0 such that
�α(ε) is nonempty bounded, then MVI(F, ϕ) is α-well-posed in the generalized sense.

Proof Let {xn} be an α-approximating sequence for MVI(F, ϕ). Then there exists εn > 0
with εn → 0 such that

〈F(xn), xn − y〉 + ϕ(xn) − ϕ(y) ≤ α

2
‖xn − y‖2 + εn, ∀y ∈ Rm,∀n ∈ N. (15)

Let ε > 0 be such that �α(ε) is nonempty bounded. Then there exists n0 such that xn ∈ �α(ε)

for all n > n0. This implies that {xn} is bounded and so there exists a subsequence {xnk
}

of {xn} such that xnk
→ x̄ as k → ∞. Since F is monotone and ϕ is convex and lower

semicontinuous, it follows from (15) that

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y)

≤ lim inf
k→∞ {〈F(y), xnk

− y〉 + ϕ(xnk
) − ϕ(y})

≤ lim inf
k→∞ {〈F(xnk

), xnk
− y〉 + ϕ(xnk

) − ϕ(y)}

≤ lim inf
k→∞

{α

2
‖xnk

− y‖2 + εnk

}

= α

2
‖x̄ − y‖2, ∀y ∈ Rm.

For any y ∈ Rm, let y(t) = x̄ + t (y − x̄) for all t ∈ (0, 1). Then

〈F(y(t)), x̄ − y(t)〉 + ϕ(x̄) − ϕ(y(t)) ≤ α

2
‖x̄ − y(t)‖2.

By the convexity of ϕ,

〈F(y(t)), x̄ − y〉 + ϕ(x̄) − ϕ(y) ≤ tα

2
‖x̄ − y‖2, ∀y ∈ Rm, ∀t ∈ (0, 1).
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Letting t → 0 in the above inequality, we have

〈F(y), x̄ − y〉 + ϕ(x̄) − ϕ(y) ≤ 0, ∀y ∈ Rm,

which together with Lemma 2.2 implies that x̄ solves MVI(F, ϕ). Thus MVI(F, ϕ) is well-
posed in the generalized sense. �

Theorem 6.2 says nothing but that, under suitable conditions, the α-well-posedness in the
generalized sense is equivalent to the existence of solutions.

The following example shows the assumption that �α(ε) is nonempty bounded for some
ε > 0 is essential in Theorem 6.2.

Example 6.2 Let m = 1, F(x) = 0, and ϕ(x) = δK(x), where K = [0,+∞). Clearly, F is
hemicontnuous and monotone, and ϕ is proper, convex and lower semicontinuous. For any
ε > 0, we have �α(ε) = [0,+∞). By Theorem 3.2, MVI(F, ϕ) is not α-well-posed in the
generalized sense.

7 Conclusions

In this paper we introduce some concepts of well-posedness for mixed variational inequal-
ities. In Sect. 3, we establish some metric characterizations of strong α-well-posedness. In
Sect. 4, we discuss the connections between the strong (weak) well-posedness of mixed
variational inequalities and strong (weak) well-posedness of inclusion problems. In Sect. 5,
we further investigate the relationships between the strong (weak) well-posedness of mixed
variational inequalities and the strong (weak) well-posedness of fixed point problems. In
Sect. 6, we prove that under suitable conditions, the well-posedness of a mixed variational
inequalities is the existence and uniqueness of solutions, and that the well-posedness in the
generalized sense is equivalent to the existence of solutions.

It is known that the concept of α-well-posedness has been introduced for optimization
problems [5], variational inequalities [5,17] and Nash equilibrium problems [17]. Now one
open problem arises in a natural way:

(a) Is it possible to consider the concept of α-well-posedness for the inclusion problems?
In Theorems 3.1–3.2, we give some characterizations of strong well-posedness. Another
open problem is as follows:

(b) Is it possible to give a metric characterization only for weak well-posedness?

As pointed out by a referee, it is deserved to consider the above two open problems (a)
and (b) in the future.

Acknowledgments The authors thank two anonymous referees for their helpful suggestions and comments
leading to the improvements of this paper.
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